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ABSTRACT

The distance dist(f
~
W
f l K

) of functions I with certain singulari t ies

from := functions consisting of no more than K polynomial pieces of

order n is shown to be 0(K 5
), i.e., of the same order as dist(f,W

n,K

for f € ~~~~~ It is shown that this optimal convergence rate is realized by

approximations constructed with the aid of a simple adaptive algorithm .

The paper offers a very simple mechanism for the analysis of the error

achieved by such adaptive approximation schemes.

AMS (MOS) Subject Classifications : 4lA63, 4lAl5 , 4lA25 , 4lA40, 4lA55

Key Words: adaptive, piecewise polynomial , approximation, quadrature,
inultivariate, degree of approximation

Work Unit Number 6 (Spline Functions and Approximation Theory)

EXPLANATION

In adaptive quadrature and other processes of piecewise polynomial approxima-

tion to some function f on some domain D, one subdivides the domain D

into cells C
1
,... IC

K 
and constructs on each cell a polynomial approximant to

f. Computational efficiency both in the construction and in the use of such

approximations demands that a given error requirement be met with as small a

number K of polynomial pieces as possible. How such optimal subdivisions

might be chosen, is at present only fully understood in case D is an interval,

i.e., when approximating to functions of one variable. The paper proposes a
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very simple algori thm for developing an appropriate  subdivision when f is

a function of many variables. The point of the paper is to show that the

error achieved by the piecewise polynomial approximation So constructed goes

to zero like K ° as the number K of pieces becon~es large, even when the

function f to be approximated behaves badly in places . Since one cannot

hope to do better than O (K~~) even when approximating a very smooth

(analytic) function, this shows that the algorithm realizes the potential of

piecewise polynomial functions to approximate well even to badly behaved

functions .
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AN ADAP T iVE ALGORI THM FOR MU L T IV ARI ATE APP ROXJ MMI ON GIVING

OPTIMA L CONVERGENCE RATES

Carl  do Soa r and John R. Rice

1. t i t x . t o .  t i~~ i .  e’ cons ider  a ppr ox i m a t i on  f r o m  the class

‘p
n,K

cf  t i t  i ;.: cii . I :.~~~~:i i n )  which cons is t  of no more t h an  K pOlynO :n io l  p ieces

ccicl  of i d  a , i . e .,  of total  d c y rc e  less t h an  n .  A p p r o x i m a t i o n  f r o m  I’ K f o r

L > ] w .  t : ~I~ t i  a~ ta.i r i y  l t ia7  by B i r m a n  ~ ,i3 Soloiniak 12 ]  . Impr ovoinent s  o~ t i ~~ ir

l C a : l f t S  ru  . L : ~~ : , . L t i :  ~~i y j  [ 3 ] ,  ~ nd i uoh  of i l i o  wor~ j r  p ! e C e n h i . i in 1115 t . u r v s y

a r tl i  le (41 l - u t . : t r  ox oi  ~ o l o m i a h  r i . ~~~c use of a k i n d  of a d a p t i ve  p a r t  i t i ~~ I i  i i l 1 : r i th r . 1  in

SOllit- of  t a i i~~~ , I i t the i s -au  1 U; ito nci t_ co l i t al  ii ow a nor ou t s ;  t ; i  i i  a Ti icj  i r esul ts

ye 1-01011 1 t I C S.  1~~~t I i  it t O u t  d i s t ( t  •~~ K 1 — O ( K  1
) f o r  ~u o c t l  i a ~~~ 1i ;;; . But , t i o l l

d e c u t ~~ t~~ o, of - c i  t j . j i  ~uns  7 5;  c~~ua:.o; . f o r  w u i  :h s u c h  an u ; ’ t e n i )  r a t e  i f  a 1 1~~~~x r - t i s - n

is ,; t c~~’ . t ! s  i s  is  t i ~~~. ; C ot ( ; j f l  ~ .fl j ;~ 5 cii sc~t . l i i 5 ~~~s. Th i s  d c t i i j 1 l  I i i ;  i s  d i f f i c u l t

to ~~~~~ t iS i f  i c  f a t  i i  not j r .  . By a . i s t r . s s , t , our  a n a l l a i c  i rs- l ud r s

ex~~l i c r  t i  y 5 I ~ ’ t ti OS; l t i -  f o r m

f ( x )  = g ( x )  d i st (x ,S) °

:1 5- - e ~~~~~ ~ j~ a ~~~~~~~ i:i~~t ij f o ] d .  Wo- show t h a t  the o p t i m a l  ( o f l v ( - r q ( ;i , ~ r a t  a

on i ~ ~~N c i  to  cichi a v - - d  il a > mn/N — ( N — r n ) / p ,  when- c m := d i m ( s)  a td  I.

t f j l ( - 5 .l L H i t i O f l  1 .; used.  Wu a l so  sh ow by an example  t h a t  t h i s  r e s t r i c t i o n  on a is in

i c y  for  o p t ic al  convergence ra tes . These examples  help to establish the

b o u i s t , i  y of i h i -  al as; of f u n c t i o n s  which s a t u r a t e  p iecewise  p u l y n o mi a l  a p p r o x i m a t i o n .  Our

u i s u l y s ; i r ;  i t a t  i at  r i c t - : c i  to p iecewi re ~olynomial approxima tion and i n a]u d e~~ , for example,

approx i ( h  t ion  ~~ 1 .1 oioliiig fui i- t i a n  m et h o d s .

We now ch ci  d o  the subject matter of our paper in some detail.

Sponuot d by t i~ m i  t i i) t i l t - S Ai ry w i t s - i  Contl  act No. DAAG29—75—C—0024
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We are interested in gaug ing the efficiency of an adaptive algorithm for the

approximation of functions , or of functionals on functions , on some domain 0 in

The a lgo r i t hm produces a subdiv i s ion  of 0 into K nonovel-lapping c e l l s  C
1 

and , on each such coi l  C., an appropriate approximation.

The ingredients for the algorithm are:

al. a collectjuti ~ of a l lowabl e cells.

a2. a (nonnegative) f un ct i o n  ~~~~~~~~~ with E(C) giving the error (bound) for

the approximation on the cell C.

a3. an initial subdivision of the domain 0 into allowable cells.

a4. a division ~~3pr i thm for subdividing any allowable cell C into two or more

allowable cells. C is called the ~~~r en t  for these latter cells.

The adaptive ale-orithm consists in producing , for each current subdivision , a new

subdivision by dividing some cell in the current subdivision ~a la a4, until E(C) < £

for all cells in the current subdivision , with r some prescribed positive number .

Existing adaptive a l g o r i t h m s  fo r  quadra tu re  or for p iecewise  po lynomia l  dpp roxirn at i on

( in  one variable) are considerab l y more sophisticated than this simple algorithn . Y~ t

our s i m p l e  a l g o r i t h m  al lows us to a n a l y z e  qui te  s at i s fa c t o r i l y  the  e f f i c i e n c y  of the

approxima tions produced by these mor e complex a lg o r i thms , i .e., the relationship be tween

the l rcs ciihed tolerance r and the number K = K (r) of cells in the final ~ub d i vi s~ on.

Her e , we v i sua l i ze  the work of const ruc t ing  the appropriate approximation on an

allowable cel1 to be the same for all cells so that the work for constructing t..e final

approximation is; propor t ional, to the number K of cells in the final subdivision . This

is still true even if we count all the intermediate approximations constructed as well ,

since the  total number of ce l lo  considered canno t be b igger  t h a n  2K. On the other

hand , r , or at times Kr , or some other function of t, measures the- accuracy achieved

by the final approximation.

For f-he analyois of the relationshi p between K and , we make the following

assumptions regarding ~ and E.

—2— 
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ci. C consists of bounded , closed , convex sets.

c2. Cells are not too different from balls: Associated with each cell C I C

are two closed balls, bc and , for which bC E C E ‘~~ 
, and

Il inf dj am(b )/d ia m (B ) > 0
CEO C

c3. Invariance under scaling : If C I ~ and c is the center of its inscribed

ball bc , then, for all positive p,

C : c + p(C - c) e a:
p

dl. Parent and children have comparable size: Foc some positive B and all C e a:,

each child C’ of C produced by the division algorithm a4 satisfies

IC ’I/ICI > 8

Here,. and below, BI denotes the N-dimensional volume of B.

el. Monotonicity : C C C. implies 5(C) < E(C’).

The basic tool in our analysis is the number

(5) I E I  : f dx/O(x ,c)
D

with

O(x,c) : inf{ICI : x I C I C, 5(C) > c)

We will show that

(6) K ( c )  < T E l /B 
-

and , in this way, obtain quite explicit bounds on K for specific choices of 5. The

following lemma gives a hint as to why (6) ‘iight hold .

Lemma 1. If (C.)
K is a subdivision for D with E(C.) > c for all i , then

_ _ _ _  — 11  —
~~~~~~~~~~~- 1 —~~~~~~~~~~

K < TE l— C

“Proof” . We have

K K K
K ~ lc .I/Ic . l ) J dx/~C.~ < 

~ J dx/Eh(x ,c) I~I
i~ l 

1 1 
i=l C. 1=1 C. 

C

1 1

since O(x,c) < ~C J  for all x I C.. /1/

—3—
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Of course , this argument fails to establish that l/8(.,c) is even integral-le .

But, as we said , it gives a hint as to why (6) might be t rue.

In the next section , we derive various basic properties of the function 0 and the

number l E1
~ 

and prove (6).

—4—
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2. The function El . We begin our discussion of the function 0 by establishing

some properties of the allowable cells.

Lemrta 2. For all C I C and all y, the allowable cell C := c + p (C - c)

contains y for all p > 1 + dist (y,C)/radius (bC). Here , c is the center of the

associated inscribed ball b
~
.

Proof. Any such cell is allowable by c3 , so that we only have to prove that y e C

for the specified values of p. This is obvious for dist(y,C) 0. Let dist(y,c) > 0

and let b’ he the ball around y of radius dist(y,C), and let d’ be a point common

to C and b’. In the plane determined by d’ , y and c, let 2. he the straight line

which intersects the segment ~e,y), at the point d , say, and is tangent to bC , at

the point t, say. Then d e C by convexity, hence y is contained in the ball

c + (b - c)I d - c l C

But the-ti , r:cdist(y, Q ) < dist(y,C), and , wi th t the point of r closest to y, the

two trian~ les (c ,d ,t ) and (y,d ,t’) are similar. Therefore

ly — d J — J y  — t ’l = _____r dist(v ,C)
— ci Ic -~ T radius(h

~
) 
~ 

radius (b~ )

and the l emma now follows since y — cl /Id — ci = I + ly - di /Id - ci . /1/

corolli rv. rf 0(x ,~~) < for semi x, then 0 is houn ded on bounded sets.

Proof. Dy assumption , the re  e x i s ts  C C with x C C and E(C) > r. If now

y 1 C, t t~~ i P (y, t) < w h i le , if y ,V C, then , by the lemma , y C C
0 

= c 4 p ( C  — c)

for P : 1 
~ 
dist (y,C)/rudius(b

~
). nut then, C D C (by convexity of C), hence ,

by el , E(C ) E(C) > C. This shows that, for every y,

(7) 0(y,c) < c i  = 0N Ic l  . / / /

A little more work proves that El is locally Lipschitz continuous.

Thearem 2 .l . 1f 0(.,c) is finite at some point, then

(8) JO (x ,n-) — 0(y,r ) I  < L(x ,y)~ x — y
~
, all x , y

with L bounded on bounded sets.

L _ _ _ _  ~~ - -



Proof. Let x f C f  C with 5(C) > r arid let r := r a d i u s ( b
~
). By (7),

O(y,r) — < (0
N 

— 1) ci

w i t h

p = 1 + dist(y,C)/r < 1 4 i~ 
— x)/r

hence

N-i
(
N 

- l)ICI < (o — i)icl ~
— n=l

N 
N-i  

N- i — n
~~. 

ly — x~~jc~/r ) (r + ly — x l )  r

n=l

By c2 , lb c I ~~. ci < I B I  < i h cl/~ 
while  lb cl = r N

ce nst N . The re fo re

I Cl/r
N 

~~, 
const N /~~ 

and r < ( I C I / c o n s t
N

) l
~~

N , showing tha t

0(y , c)  — id  < 1
N 

— l) l c l < F ~(I C I , J y — x l ) l y —

for some function F
N 

which depend s only on N and is monotone increasing in its twa

argumer5ts. By taking the infi~ um over all such C, we get

0(y,r) — 0(x,c) < F ~~(0(x,r)jy — x I )jy — x l

which  ) i C V o 5  (8)  wi th L ( x ,y) F (max~ O (X ,c)  ,0 (y,c) } , l~ 
— x l ) . Out such L is

bounded on bounded Sets by the corolLary tso le mma 2 and the monotusicity of F N . I/I

corohl~~ y. ii cc is hounded arc-I :~~ inf
EG

O(x .r) > 0 , t hen  l / 0( . , c)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~n G.

It is obvious I fiat 0 (x , ) is monotone (even if 5 were not) . Further , one

would c/p at lim
~ ÷0

O(x ,c) 0 for each fixed x, but this need not happen.  Cons ider ,

e . y . ,  tin r us e  when N = 1 , C consi s t s  of a l l  closed i n t e r v a ls , and 5 ( C )  = d i s t

w i t h  f t he  s t e p  f u n c ti o n  h i a v i n g  j u s t  two jumps , both of posi t  i v o  s i ze  2 , at  —l and

1, say .  Then

5(C) = number of jumps  of f c o n t a i n e d  in C

Therefore , 0 (x,i ) is infini te for r > 2. Further, for 1 < r < 2 ,

I (x,i) = l x i -# 1 if x ~ —l

0 (x , c)  1—1 ,1)1 2 if —i < x < 1

I f — 1 , x )  = x 4 1 if 1 <

-6-
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Final ly ,  for 0 C r < 1,

O(x,c) = dist(x, {—1,l})

Note that the fa i lu re  of 0 ( x ,~~) to go to zero wi th  C implies , because of (6),

unusual ly good approximation rates possible. This wi l l  be taken up again  in Section 5.

The example also i l lus t ra tes  the possibi l i ty  that , even for posit ive c ,  8 ( ~~, r )

may vanish at some points. In such a case , though , our a l g o r i t h m  w i l l  not t e r m i n a t e

since then, by the monotonicity of the error 5, 5(C) > C for all C containing a

point x with 0(x,e) = 0. Since 0(y,c) cannot grow faster than constly — x~ ne -ar

such a point ,  by Theorem 2. 1, i t  follows that  J dy/0 (y,c) is infinite for any C
C

containing x. Thus , (6) holds  t r i v i a l l y in case 0 ( x , e) = 0 for some x € 0 , both

sides then bei ng i n f i n i te  f or all  small c.

We are now ready to prove (6) .

Theorem 2.2. Let (C.)~ be a subdivision of 1) produced by the adaptive_a]qocithrn

from an i n i t i a l_ sub d i v i s i o n  (C°) wi th  E ( C °) > c , all i. Then, with B the constant
1 1

in assumption dl,

(6) K <

Proof . By assumption, 0(.,i) is finite evei-ywhere and , since the a lgor ithm

stopped, l/O(.,r) must be finite everywhere in 1). Hence , by Theorem 2 ,1 , l/U (~~,c)

is continuous on 0 (and positive), thus integrable , and

(9) for all C f  C, f’dx/e (x ,r) = IcI/e (x
~
,c) for sonic X

C
I C

C

Now, for each i, let .1. be the parent of C . (in the sense of a4). Then E ( 3 ) >
1 1 1

therefore 0 ( y , c) < l~~i < 1c11/El, using dl , for all y e J . . Hence

K 

~ 
lC 1 J/lC~l I 8~~ 

i=l 
I~ . I / e (x c .C ) El i ! f dx /O (x , € )  =

which f in ish es  the proof. ///

We will show in many specific circumstances that , as r -
~ 0, both K = K ( c )  and

go to i n f i n i t y  at the sam e rate , so there is then no doubt, as to the sharpness

of ( 6 ) .  Still , it is nice to know in general whether the two quant i t ies  are comparable.

For this reason , we now prove a converse i n e q u a l i t y .

- --- S



Thcorem 2 . 3 .  SUppose 1/0 ( .  ,C )  
~~ l n t e y i ’ a b ] e u rml ’ n C , i . e . ,

there ex is t s  a w i t h  w ( 0
4

) = 0 so t h a t_for anv s u l ) dj vj sj o n  (C . )  of the  t/~~55frd

domain 0 and choice of j~9~~ ts x . C C.,

I f  dx/0(x,t) — lC .1/0 (x. , c) ’ < ta (max ,IC . l ) l E l , a l l
1 1 1 — 1 1 C

Then, for any subdivision (C.)K of 0 with E(C.) < c , all i,1 1 —  — 1~~~~ 
——

(10) (1 — 
~i( IDI/K ))IEl I cOiiStN B K

Hence, if lim~~~ K( c) = ~~, ~Ji~ ‘ 5 !~2~ 
K(s) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

For the pi-oof, we need the following lemma .

Lemma 3. I f  C C 5 and 5(C) 1 C , then , a t  the_center  x~ of the inscr ibed  ball

bc for C ,

(11) - E l ( XC .c )  > (0 2/2)N lc l

Proof.  If XC 
C C’ C 5 with circumscribed bdl l  Bc, and 113 c, I I I1’)c i I ’2~

’ , then

C’ C Be, C b~ and so E(C’) I E(bc) 15(c) I r ,  by e - l .  Hence , x~ C C ’ e C and

E(C’) > C implies that lb~I/2
’
~ 

< o l ,  while , by c2 ,

I~ l I i~~l I lbe I/r1 t
~ I lcIi~

N for  al l  C e C

Therefore, lCi (n/2)N I f b C I/ 2
N < R~’l I Ic~i/nN , an d ( 11) now follows s in -c ( ‘ was

arbi t rary .  I / I

Proof of Theorem 2 . 3 .  Let (c .)~ he any  subdivis ion  f o r  0 w i t h  E ( C . )  < r , a l l

i, and let x . he the center of the ball  b Inzcr ib cd  in t h e  cell C . ,  all i.
1 - C 1

Then, by Lemma 3 and the assumpt ion  on u n i f or m  Riem an n  in t e g r i l i I i t y ,  we have

K K
K = ~ IC .I /l cj (~/112)N ~ Ic !/O(x ,c)

i=l i=l

= (2/n 2)N [lsl + l~~l/~(~~~
) - l E l~ )]

> (2/rt 2)~~~l — ui (5~tx . C . ) J f s J

There is , of cour se , no guarantee  that  fnax I C . i  0 as c -~ 0. Still , we may

r e f i n e  cur subdiv i sion  sufficiently while keeping the number of i t s  ce l l s  w i t h i n  0 ( K )

as follows . Starting with the subdivision (C.)~ under discussion , we carry on with

-8-
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the adaptive algorithm until a new (finer) ,-sbdivjsjon (C~)
K 

is ieached w i t h

0 1/ K. Th s i i , the j - i r r n t  of each new c e ll  r u s t  have had vo lume g r e a t e r  than

I 01/ K , hsr :e  t h e rs  n u s t  ~avi  ii less t k  K b u s h  p ar e n t s ,  and each such  i a r en t

could not  have f~~d moi c t han  li~ c h i l d r e n , by d l .  c o nse q u e n t l y ,  K ’ 1 (1 + B ‘)K (in

p a r t i c u l a r, the a l g o r i t h i —  must f ,v,- :t-~~~~-d), a rid f r o m  our  e a r l i e r  a r g u m e n t ,  now applied

to the ic- I m c,) jut t i t l ~~ (C),

(1 4 > K > (2/B 2)N (l - e ( I D i / K f l { E l  . 1,1/

We conclude th is  sect ion w 1 t h  a shor t  discussion of our error measure

I E I ~ f dx/0 (x ,~~) .

0

kI~ incieases w i t h  and , us ua l l y ,  11m
5>0 iE I = . In particular instances , we

are able to state q u i t e  p r e c i n l y  how E l  goes to i n f i n i t y  w i t h

In general , I 1 s c ~~~c~~sae , i.e.,

(12) 5 < F i mp l i e s  E l  <

1~ls’, , lE l 1 - I foi  > 0. F i n a l l y ,

( 13) l~ 
-~ Fj 2 I I F ’ l~ € In 5

For the auf of (13) , n , t ’  t h at  foi any C S T w i t h  (5 4 F)  (C) ~ 2 c,  we must have

rn ax {E (c)  , F ( X )  ) > c , hence O
~~~~

(x , 2 c )  > m i n {0
5

(x , c)  , O~ (x ,s)), and so

f t  + I I Oax( ~~~~~~~ . ~~~~)dx !~ I~ + l n l ~

—9—
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3. 7ui e x a n t b e .- R c s t : r ox m m a t io n j n  L I a ,b) f rom 
~ 

In this Section ,

we bound ls I~ for  a sp&ci fic choice of E in order to illustrate the use of

Theorems 2.2 and 2.3.

We are g i v e n  a f u n c t i o n  f on some interval [a ,b), and f is in ~
n on

[a ,bJN{s}. But  we know that

(15) j f
( ri )  (x)  I I const f lx  — st

e n

for sure - i with rip > -1. We intend to approximate f from 1P 5, i . e . , by p i ecewi se

polynomial lunctions consisting of at most K polynomial pieces , each piece of order n,

i . e . ,  of degree less t h a n  n .  We take the L —normp

lI g II p ~~( f ~ l~~~ I~d )

as osi measu re of func t ion  s ize.  Our assumptions on f then imply that f e ~~~Ea~b]

k1e - (  [8) has shown some time ago that, for such an f,

dist (f,~~ ) = 0(5  n )
p n ,K

Wr t i c  about  ~ reprove this result. In fact, we wi l l  prove t h a t  the approx ima t ion  to

such a f u n c t i o n  f const ructed by the adapt ive  a lgori thm approaches f at the rate 0(5 0
)

As collection C of allowable cells we choose all finite closed i ntervals on ~~~ .

Th us , cl , c2, c3 are s a t i s f i e d , and rj = 1 in c2. For the division algorithm a4, we

L ike  interval halving , so dl is satisfied with B 1/2.

Ideally, we would take for the error measure on the interval C the distsnce of

f f r o m  F
C n

S (C) d is t  (f,1’f p,C n

hu t it is simpler , and corresponds hotter to actual practice , to work with some bound

5(C) for Ef (C). Such a hound we now derive .

I f  f C C0(C) for some interval C C  [a ,bl , then dist (f , JP
— p,C n

I c’ )r ’,t iI~~~ Il I c I n+l/1). Thus, with our assumption (15), we have E (C) I const F ( C ) ,
0 P’ f,n

with

( I b )  F ( C)  : di s t( s ,C) ”
~~~I c I ~~

4 ’
~ , a ll C C ( a ,b)

-10- 
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I
for such C. Note that F(S) = in e350 s C C i f , as we assum e,

a < n

Hence , foi sick  C , and for  C “near ” 5 , we need an alternative bound . If s is

not in Ute interior of C, e.g., C = [u ,vJ with v I s , then  we have

1( x)  = 

~ 

f~~~ ( i i )  (x  - u ) 3/ j !  + (x  - ~)
n l

f
(n) 

(t)dt/(n - I ) !

and so

dist
c
(f,l t )  < con st  ( I  f ix - ti n 11(fl) 

(t)dti~ dx)

But , ly (15)

(x - t) ’~~~ f~~~ ( t ) c l t i  I COflSt
f l f  

~~~~ 

Ix — tI~~~lt — Si
0 0

dt

~ COi)5t~1 J I s  — t L 1 dt

a
< const J r - x~— n , f

‘11 -

I/p v
dir ! ( i  , D -  ) eta - t 5 — x l t dx < const~ (a — x ) ”~ I~~, t i t  - - - -- U

T h i s h i , , ’ , C - : su -C C , h i - - !  ( t  , I’ ) < c’onst C ( S) , w i t hj - ,( n -— f , n

(17) G i l  : ‘ ( u t  (u , C) CI)°41”~, all C C [a,b)

F i n , i l 1~ , i ’ t hu S et h S t S lies in th e interior el C , then the e r ro r  m i u h t

i t - ta I i  a -  cot ~~ 
)~‘j’ ~~~~~ ~~ a 1 . h i t i on a l  h y p o t h e s e s  on 1. Hence , if ri 0 ,

then s~- assum e t L  d i i  (f, ) conet G(C) also for C with s C int (C)p , C n — n, f
To sumniari ti - , we have

(18) 5 < const  E : const. ni in{F ,G ’(
f n,f n,f

with  F and C given by (16), ( 1 7 ) .  Both F and G a re  monotone , and continuous

where rIley are f i n i t e , and F ( C )  = ~ implies G ( c )  < ~ ‘. Hence E is monotone and

con t i n u o u s .  Exten d i ng S to all  of C l)y

— 1]—

-.

~ 

—— - - 
_ - - --- -----—- — -~~~ - - .



E(C) : E(C fl (a , b ] )

c l e a r l y  - I i . u u q e s  n o t h i n g  i n  t h i s .

P i a t t i ,  t L l .  For the function F t h - f i n - d  i n  ( l e ) ,

—1/ (iifl/p)
I ~I < const c

li - - f . Ft -i each x ( [a , b J ,  let C be an interval with x C C and lc I =
x x

hence F(S ) -~ c .  Such sur e l y  e x i s t s  for all su fficiently cmall c by the contrnuit j

of K. Then C’ ~

If new d i t  I (s , C ) < Ic I , t henx — x

F(C
x
) = dist(s ,C )

ri n
I~ 

nil/p 
~

w h i l e , i o t  a n y  C ,

G (C) >

Thei e for i , d i r t  (s ,C ) < I c I i m p l ie s  that  s > I C r i + l / h  h e n c e

I s  - xi I d i s t  
~~~~~~~~~~ 

c j <  2~C~~ < 2~~
l /( l

~~~
) 

Th is  ~~~~~

A {x C Ia ,Iil di~ t (s,C ) < V I }
X — X

1/ (ci i l/p)
has A t  < 45  . Since

I G(C ) ( 2 1 5 1 )
rh l ’lt for  x C A

it follows t i t it

/ dx/0(x ,€ ) I IA !25 
]/(0 l/fl 

18

On the ether h tu ~ci , since s IF(S ) = d i st ( s ,C ) r n
I C I

fhh/
~
)
, we have

l/8(x ,s) 1/ic I I

and so, as ft 
- x i I dist(s ,C )  + C

~~
i < 2dist(s ,C )  [or x y’ A ,

dx/ 0 (x , s) I 
-1/(n+l/p) 

1

h 
- x i / 2 )  

(ci
~

n ) / ( n4 l /p )
d

— 1 / ( i t 4 l / p )
cont t

a,b,ri ,p

Thuci

Isl e = 1

b 
d x / 0 ( x , r )  = (f  4 f)dx/0(x,c) 1 R 4 const

which  f i n ish e s  the p r o o f .  /1/

— 12—
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it  fol  Isi - w i t C T i t t e r ,  tit  2.2 t h a t , for  such a f u n c t i o n  f , the  adap t ive  al g o r i t h m

~~t r k i : j  c - i th - ’r w i s h S
~ 

or wi th the bound const  f o r  it , produses an a j p x o x i r n a t i o n

9 C F
n K  

to f f o r  which

II ~ — 

~~ I I const 
p— 1/ ( i r + l / p )  

= const 
p n / ( ni l / p )

w i t ,  i c , a g a i t .  1i t h e  j r o~ osi  t iOn , < c e u t s t/ f ( d x/ e  ( x , ~ ) ) ~ -~~i~~ t / K .  T hi s  shows

that t hen

I k - ~I i~ I concit n / ( o l l / p )  
1 conat K 0

the pc i-ri sod L’-~ ~-:

Note that t hi’’ at-jur -nt also covers funct i c - u ,  h a v i n g  f i n i t e l y  many  s i n g u lar i t i e s  of

ai q i-hi r aic type no worse thin 3. Pree i c ;e ly ,  i f  f = f . ,  w i t h  f . e ~~~~ ( [a , b ]~~ (s . })

and f
(n )  I I a i x  - 5 1

0 n
, a l l  j ,  then , fr tn t i c  r u t ,  i t  fey (13),

In If 1 -- 
- - ‘ J Cj = l  -

w i t h  K . : muz,ft.,G ,~ and F , and C - d c f i t -d l y  ( I t )  s i t - i  ( 1 7 )  s t  i t  a n j  l u c u - d  by
I I J J I

a . . Thus
I

P < Y I K I  < ~~~~~~ t
11

~~~~~
11

~~
1 I ( i t  >

l/(n ll /1’)
f r — - 

- j  r/(ra ,) — . -

j = i

‘I’her,f -i e , t~~ . i : ! vs t i l t , r I t l :  ~- u r d t t - - - a ;-; - c ’ c r . t i - , t c  of ,-~-t i v i  r ; - u d  i f i t  I

f c n ,  I, t O i l s , t

We - l v ’ c c r r i - i r d  c u t  t I u s  l i s t  at t I r e - i t i t ,  r i - - i t  1’ ‘ - 1  i i  o ’ d - t  t e  ‘-, i t -w t h a t  i t  w i l l

not  b y i tr e  i I , u~ p it  t i c - na vi ;  i t  1 an  I w i t  1 i ti f it It I v  ct tt , - i t  i t t  1 - i ‘ r I . I

t h i s , a t ’t cr c  r e f i n e d  v i r t i r n  of (11) w o u l a  Is- n ’- ’  - i d. A ir , i t  I . : .  ! - r -  a c-i t-

to, u t d o - c  n , ~ i - t i p ! - i t  ‘ - , I i i  I ,  i t  I p b i t  — h -  t i  ~~~ J . . ruh - ‘

dit ;t (f , 
n ,K~ 

I - ‘n ~ - t  ~~-n 
~~ 

( s )

The t ’,j it - a l i t ’ ,  i - t i  i s

d i t - t  ( 1 . 1 1 ~ F ( C )
I , c n —

w i t h  F (c )  -- ( - ~~~‘ - t  f~~~ ( c )  L Thus , s = F ( S ) 
~~~~~~~ 

and so

I / O  (x , i )  ) / t~ I (1 ( c )/ i )

— 1 3 —

-

~

- - .-



There fore

I I~ I~ f dx/8 (x ,c) = 
‘-l/(n+l/p) j  F ( C )~~~

(0U
~~~~dx

—l/(n4l/p) (n) ,o
C f J) const ,

with a : -  l/(n-i- l/p) . It is this last approximate equality which causes additional

technical difficulties. Once it is settled , the argum ent finishes as above’.

4
’

—14—
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4. The ada~~~ye a ro i r l i t i o n  ctf a f u nc t i o n on w i t h  sj n ~ u1arjtjcs on a

smooth m a n i f o l d .  In t h i s  s e c t ion ,  we i n ve s t ig a te  the app-reximation of a function f on

some bounded domain D in ~ N when f is in C~~~ (~~~S) for some smooth manifold S

of dimension m. We do not specify the collection C of allowable cells beyond the

requirements made in Section 1.  Then we have

(1 9) dist (f , P ) < const f~~~~ (C)  IC I ’~~(diam C) 0 for C 0 S =p,C n — n

wi th

f
(n )  

(C) sup max I (D
y
!) ( x l  I

xC C lYVn

as is well known (See, e.g., Norroy ~7; p. 85)’. Here , P stands for the collection

of polynomials on ~C1’
~ of total degree less than n. If now f were smooth enough ,

i . e . ,  if f (n ) (Ø) < , then , for any  j a r t i t i o r u  (C . ) ~~ of D , we would get an

approximation g to f wi th

1k — 

~II~ = 
~ 

dist
p c

(f
~
P
n
)P

I (cei st ~~(n )  
( D ) ) 1’ 

~ ~~ 
(diam C.)~~

I (cou rt  f~~~ (P ~~(max , ( di~~~ c~ ) 0)~~I D I

hence

11 1 — gIl 1, I n f l f D  max 1 (diam C1
)0

This expression is of O(K~~”~) if the C. are chosen to be mere or less u n i f orm . We

intend to show that this same optima l order of approximation can be achieved even for a

function with certain singularities when the approximation is constructed by our adaptive

al gor i thm .

We now specify the s ingular  behavior of 1. We assume teat

(20)  f (0) 
(C) I const

1 d~~S~~(S ,C) a n

He r e and below , we take the distance between two sets in to be the shortest

distance between them , i.e. ,

dist(S,C) : inf Is — ci
SES
cC C

—15—



wi th  .
~~ 

de noting Euc l idean  d i s t ance .  Our assumption (20) doer h u t  imply it- i i  ( -  u t

d
~~

St
p C

(f
~~

P
n

) in case S 0 C  * ~~~. We stake the assumpt ion  that

(21) di st 
~~~~~~ 

I con st f I C I ”~~diam C)
3 

for C fl f. 1 0 .

Consequently,

Ef(C) := d
~
Stp,c(f~

P
n
) I corlst f S I C )

with
i i

E ( C )  := min{F(C),C(C)}

F ( C )  := d ist ( S, C)
3 ‘~ (diam C) 0 I C I l

~P

g(C) (dist(S ,C) 4 diam c)°I cI ”~
Finally, we assume that the rn-dimensional manifold S of sfngulanities of f is smooth

in the fol lowing senset

ml. It is possible to subdivide P i n t o  f i n i t e l y  many  ( n o n o v e r lap p i n g)  p ieces

D D so that, for each i , e i ther  d i s t ( S , D . )  > 0 or else t h e r c-  exists a1 r 1

continuously differentiable map 
~~~

. which maps the cylin-3er

N - 2Z : ( X E  R 0 <  x . < 1  for x i ,...,m; F . x , < 1}
in — 1 —

one-one onto some neiqhborhood V . of P. so tha t
1 1

dist(~~, (x) ,S) = ( ~ x~~)
1”2 

for a l l ~~, (x) C P .
I ‘ 3 1 1

Theorem 4.1. If f C C~~~ (D~S) und (20), (21) li - t I; b - t i - I  f t  t are a w i t h

(22) n > a > mn/N - (N —

and the m a n i f ol d  S of sin93ilarities of I is timooth i n t h - s e n s i -  t h a t  it s a t i s f i e s

ml above; then the adaptive ai~~orithzs, star tin g frorn a subdivittion (C”)  f o r  P w i t h

C C C and 5(C ) > C , a l l  i , p~~~1uces a s u bd iv i s i r (C . ) ~~ of P f o r  w h i c h

—1 / (n /N+ l / i - )K < C O f l S t
f C

Proof. The proof p a r a l l e l s  the ono for Preposition 3 . 1 .  By Th eorem 2.2 . ,

K I ~~~ I dx/O (x ,t). To estimate 8(x ,i), let x C C C  C w i th  O ( x , c )  = C I  and

E(C ) = c. By c2 , there exists a posi t ive  c-onst = connt ~ so t h a t

cOnst dimes C > Icl uI’N > diam C/couist , for a l l  C C C

-16- 
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Set

A : {x C D : d is t ( S , C ) < dials Cx — x

Then , for x C A ,

F ( C ) > Idiani C
~I l C ~I > cons t

whi le , for any x ,

G( C ) ~~ Idiarn C I
m IC 1

l/p > cons t

Hence ,

C = m i f l { F ( C  ) ,G(C ) } > const for x C A

This implies that 5~~”(3
N,”1) > const and so

d i s t ( x , S) < dist(C ,S) + d i am C
123 1  

— x x
l/(tI~ N/p)

< 2 diaxn C c const e for x C A
— X —

Further , for x C

C < G ( C )  1 (2  d i am  C ) c
~ i C i

l
~

’1 
< const I C  I~ 

i/p

whi c h  ~- r u v ’ -  t a t

( 2 4 )  1/0 Ix , I ) 1 / 
~~~~ I cut c;t , -N/  ( - t 4 t ~, }‘) f o r  x C A

By assung ’ti t i c , nl be lc h - - , i - i -  -e S has I m i t e  m — d i m , - , - i o t i a l  vo lume .  T h e r e f o r e ,  ( 2 3 )  and

(24 ) coinbin~ I

- N / ( c u + N ’ If dx /d (x ,r) < , - o u t ’~ t t ‘ h  A l
A 

—N/(cz4N/h’) (N-rr)/(a+N/p)
< cc’n ’.t I conSt  ,1

- 
—m/ ( i l N , ’

= conct c~
— N/ (cl-+ t~/j - )

I coui l ;t  I.

Nex t , since

I I ( C
~
) I di~-L (S ,C )~

‘
~~ (diarn C )~i IC I l

~
P

0—n n/N 3 l/p
< con$t d i s t ( S , C ) IC I— x x

we have

1/0(x,c) = 1/IC I I c o n s t ( d i i . t  (S ,C )
m 0

/ )  N/P )

Now , for x p A , d i s t (x ,S) < d i s t( S ,C )  4 diam C 2 d is t (~~, C ) .  Thus ,

(25) i/O(x ,c) < ( _ N/ (f l+ l/ P) cons t (d j s t ( x ,S)/ 2 )  (~~~
‘~)/ (f/U41/p) , ~ A

-17-
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It follows that

D’A 
dx/O(x ,e) < c

N/
~~~~~~~const f d i st ( x , S)

F i n a l l y ,  we show that the lac ;t integral is finite under our assumptions . For th is ,

we make use of the smoothness assumption si on S.  For each P . in the postulated sub-

division of I), we have

~~~~~~~~~~~~~~~~~~ I D ~ I d i s t ( P 1, S)
~

with

y : (ci - n)/(n/N + 1/p)

since y is iis-pat ivs- by (22). Hence-, f dist(x ,S)’1dx is finite in case d i s t ( D . , S)  > 0.

I f , on tIte other hand , d i s t (D .S) = 0 , then, by sl ,

J dist(x ,S)’1dx = f I ~ x~~) ’
~”~~det ~~~ (x) dx

P . —1
1 ~‘ . ID ,)

1 1

I conSt J ( ~
Z j> rn ~
in

const f - Ix I ’1dx
S

N

with S
k 

the u n i t  sphere i n  ~~~~~ . Since

Ix I~dx = Const
k 

~~ k 

~ 
r~~~~~~

1
drds

we have f dist(x ,t;) ’1dx < p r o vid -d y > - ( N  - in) , i.e ., provided
D.

1

( 2 6 )  (a — n)/(n/N 4 1/14 ~ in — N

But this is e x a c t l y  ‘ lie second in equal i ty  j ut (22). ///

Denote by

1’n, K

the collection of piecewi se polynomial foncti - ’iI; of ordeu’ n consisting of no more thaut

K pieces, with the corresponding subdivision (C .)~ of D with r K taken from C.

—18- 
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Coroll~~,y. Under the assumptions of the theorem,

-n/Ndist (f,I’ ) = O ( K
p, D n , K

Proof. For each small enough c , we can f ind  a subdivision (C . ) K 
for  P so tha t

1 1

E (C.) < E ( C . ) < ~~, while ~ < c~~fl~~~ 
—N/ (n+ N/ p) 

for some const = constf 1 — 1 — — f ,N ,m , n ,cu , D , S

but independent of C. This shows that

(27) N/(n+N/p) 
I const K

1

and imp l ies  the existence of an approximation g C 

~ n,K 
for f for which

h f  - 

~II~ I Kc~ I const 
p-N/ (n-14J/p)

= conSt /(n N/p) 
~ ~~~~~~

the last inequality by (27). 1/! -

Theorem 4.1 and its Corollary only treat functions with a smooth manifold of

singularities in the sense of s l .  Thus , a function like f(x) : x~ + x~ on ~ 2 is

not covered . But, by ( 1 3 )  and its obvious generali’tation, we clearly get

dint (f ,ll~ ) = O(K~~~~) for any f which  can be w r i t t e n  as a f i n i t e  sum of f u nct i o n s
p,C n,K

satisfy ing t he  assumpt ions  of Theorem 4.1. Thus , the function f(x) x~ 4 x~ is

covered . Sti l l , Theorem 4 .1 does not appl y to f u n c t i o n s  l i k e

f ( x )  : (x
1

x
2

) 0 for x c 
2

Finally, Th eor em 4 . 1  has the assumption that the domain P be represent abl e as the

finite union uf nonoverlapping allowable cells. This is , offhand , a severe restrict ion.

E.g., we require all allowabl e cells to be convex , and , typically, C consists of j u r t

hyperrectangles. But , if P is not so representable , then it is sufficient to Start

off with some domain I) containing P which is the union of nonovorlapp iucg allowable

cells (C’) provided we can extend f suitably to this larger domain 13. The possibi l i ty

of such an extension is already implicit in the discussion of the  error function S at

the beginning of this section. Our estimate (19) for d
~
$t
p~~

(f
~
P
n
) makes sense only

if C C doin f .  Without  t rying to squeeze the most general statement out of our arguments ,

we can say that Theorem 4.1 applies to the approxim ation of any function I on P which

can be suitably extended to some bounded convex domain 13 containing D. The definition

-~~~~~
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of 5 , o f f h a nd def ined only fot C C [I , is  the n extend ed to a l l  C ~ C by

5(C) 5CC “i ~), and the condition of Thc’ou-em 4.1 is r e lax ed to require initially

only a finite covering (C) for P of a l lowab l e  c e l l s  w i th  F ( C I )  > i , all i.

Note that , ~or m * 0 , ( 2 6 )  is strong er than the inequality

~ > (rn - NI/p

needed to con c l ude th at f C L ID) . One m i gh t , for t h i s  and other reasons , raise the

question of whether (26 )  is necessary . We now sho w that ( 2 6 )  is necessary in  general

to achieve the optimal approximation rate o ( K  n/N)

T h e o r e u n 4 . 2 .  If in > 0, then there exist C,  D , S and f s a t i s fy i n c ;  a l l  assumu~~

tions of Theorem 4.1 except that a is not an integer and satisfies

(28) —(N - m)/p < ci < mn/N - (N - m )/ p  ,

and, for th i s  f,

dist (f ,]P ) *p n,K

Proof. We choose

S : {x C x . = 0 for i > in)

and take -

f(x) dist(x ,S)
0

We choose P to be the unit cube {x C 0 < x , < I , all i} and take F to be the
—

collection of all scaled translates of P.

We claim that

(29) dist (f ,V ) > conet IC I
0 1 1

~
P, for all C C C, C ~ S * 0p,C n —

for some positive const independent of the particular C. For the j-rrrf , let

~~ i~~:x~~ ’ px + s for some positive scalar s and some s C S. Then I~ 0°f

while , for any g C I~~. gP C P . Therefore, if g C 11’ is a best L —opproximation

to f on C C C ,  then

diet = I If ( x)  — g (x)I1’dx
p,

= f jp °f (y )  - g(py + s)lPp
N
dy

> 
czp+N 

d is t  -1 ~~ ‘~~
‘n~p,

~’ (C)

-20- 
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p~

- But since ~‘
‘(x) p 1x + s’ with s’ = —s/p C S, this implies that

dist
~~c

(f.P
~
) = 

N/p  
dist

~~~~.1 (C) fl

Associate now with each C E C a specif ic  map ~ :x’—4 Ox + s for which s C S,

‘P ‘(C) ~ ~~~~~~ and I*~~ c I  = 1. Then p = c 1/N and ~~
‘(C) ~ S *0. Hence,

for all C C C with C ~ S * 0,

dist
~~c

(f
~
P
~
) = ICI0/

~~
1/Pdist

~~ ,
_l
(C)

(f,P
n
)

~~. lC I ° 1
~~ const

with

const : inffdist If ,]!’ ) : C C C, C CI S * • * C -~~ 5, I d = 11
p.C n

If now const = 0, then, since dist (f ,I’ ) is a continuous function of C on C
- p,C n

and the infimunt is taken over a compact subset of C, we would obtain a C C C with

I Cl  = 1 for which f~~ C 
~ n’ which is absurd since a is not an integer .

With (29) titus established , let (C.)~ be any collection of nonovorlapping cubes

which cover S ct 13. Then, by (29),

error~ := ~ ~~~~~~~~~~~~~~~~ ~ const ~ ~ lc~I 0 ~
’
~~~

while

~ l c . ( ~
’N > 1

since they cover S fl D. But this impl ieS that

error > const inf (~~ Ic . I ~~~~~~: i=l 
I~~Im/N

> const 6

with

:= in f(~I Ic1 I~ 
~ 

Jcj =

and

(pci + N)/m
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~~~~~~~

Since ‘,~ > I by the’ first inequality in (28) , the last infimum is taken on when

Ic 1 I 1/K, all i .  Thus

K
~ K ’

~~= K ~~
’
~
’ 

.

i=1

This proves that, for some positive const,

dist (f , IP ) > const
p,D rc —

= const K ci/m4 (m N)/(pm)

* O ( K ~~~~~ )

since , by assumption (28), —0/rn + (in - N ) / ( p m )  > -n/N. /1/
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5. Superconvergence. In this section , we give one more application of Theorem 2.2,

this time to illustrate how it deals with superconvergence.

First, consider the step function f on IR with just one jump , of size 1, say , I -

at some point x
0 

C (—1 ,1). The function is to be approximated from 
~~ K 

in the

L1
-nomm . Clearly, the placement of just one breakpoint, at x

0
, would provide exact

approximation.  But we are dealing with an adaptive algorithm which only knows (a bound

for) the function E~ , and does not know the point x
0
. We want to show that , even

without the exact knowledge of the jump point x0 , our adaptive algorithm pei foruns in

this  case much bet ter  than the “ optimal ’ rate 0 1K ~
) would indicate .

It is easy to see that

Ef (C) : di st
1 C

1
~~’T’l~ 

= d i s t ( x
0

, IR’ ”.C)

fo r any j - c r t i c : u l a r  i n t e r v a l  C.  Thus

0 ( x , c )  = dist (x,x0
) 4 c

and so

IF. f I~ = f dx/( lx - x0j -f r )  = 2 ln(l/c) I i n N ]  + 4 e )  (1 — x
0 

4

ConS ~u - - i t l y ,  t r c ’ -  a-Li ~ t i v e  a]qor i Uc j- roiu a subdivision with

K 1 (2 ln (l/u ) 4 c e t i vt ) / ~~

, ; ‘ - ~ 
-,~t 1 s  U t  a t o t a l  er r ec  of n - c  I t o r c -  t h i n

(30) Kr I 
— ($K-c-ouist )/2 

= O e~~~~
’2
)

In Ucct, tin- total error is I ~ since- the approximation fails to be perfect only

in the one interval which -oii t~c ins x
0 

in its interior. Further , if interval halving

is u sed , i . e . ,  ~ = 1/2 , then, a t  each s tage , on ly the i n t e rval con ta i n i ng x
0 

is sub—

- . . . . . ‘ Sdivided . Assuming x
0 

to be in general positton, i.e., x0 % tr2 : r ,s C ~~.j ,  the

error with K intervals behaves therefore like 2 K 
= e~~ 

in 2 
Thus, the error goes

to zero even faster than our estimate O(e K
~
’4
) in (30) would indicate.

As a second example, we consider L
1-approximation from to the funct ion

0f(x
1
,x

2
) : (x

1 
— x

2
)

- - 
- 
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- We take 0 to be the unit square and take for C all scaled translates of D. It is

now not possible to have f approximated exactly; still , it can be approximated better

than the ~‘optimal” order O(K 1’12) possible for general smooth functions.

Let C C C. If the line S := {x C : x1 
= x

2} intersects C at  a l l , i t  cu t s

it into a triangle T and another piece, and then Ef (C) = T I .  O t h e r w i s e , E f (C)  = 0.

Thus, if x is the vertex of C farthest from S and h is its side , then

r2(h - 1x 1 — x
2I/2)~ for h I x1 

—

Ix, 
— x21

2
/2 for h 1x 1 — x2 1

This shows that, for lx 1 
- x21

2
/2 < c , 8(x,c) = h2 with h such that

(h - Ix, 
- x21/2)

2 
= v’~7~. Thus,

- 1(~7~’ + lx, 
— x

2I/2)
2 

~f Ix 1 
— x2 1 /~

‘
~
‘

- 
e (x ,c) = ç

2c otherwise

Consequently, 8( x , c) > 2c for all x, and so IE 1 I I I D I / ( 2 c ) .  But the  r e s u l t i ng

estimate Kr < (const/(2e))~ = const for the total error  is not too encourag ing .

We get a sharper bound as follows . Set

A := {x C i Ix , 
- I

Then A l  < ~~~~ hence

f dx/O (x,C) < I A I / ( 2 C )  =

A

lhlso,

f dx/8 (x,c) = f ( I~’7~ + lx , — x2I/2)
2ax

D’A

1 1/2
< 2 / f (/~7~ + s) 

28dsdt <
0 c/2

Thus IE 1l~ 
< const/V’~, hence e I const/K

2 for the number K of squares in the

partition constructed by the adaptive algorithm . The error achieved is therefore no

. —l - —1/2bigger than Kr < const/K, or, 0(K ) as compared to the optimal rate O(K ).
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6. Algorithm re-tlizations for smooth ars roxiination. The obvious concrete realiza-

tion of the adaptive algorithm are for piecewise polynomial approximation such as

analyzed in Sections 3 — 5. Most of these realizations would produce discontinuous

approximations. This is perfectly acceptable for applications such as quadrature , i.e.,

L1
—approximation, or in situations wher e only the accuracy of the approximation matters .

Other applications require smooth approximations and , in  one variable, this may be

achieved by either using a local approximation scheme tha t  preserves smoothness (see

Rice 19] for two such methods) or else by “smoothing ” the orig inal discontinuous

approximation by “pulling apart the knots”. In principl e, one can also “smooth” a

multivariate piecewise polynomial approximation , but it is not clear that one can do it

in practice. The Simple mechanism of “pulling apart knots” is not available , and the

problem of carry ing out some reasonable local “smoothing ” on a piecewise polynomial

function on a nonuniform subdivision seems insurmountable.

The difficulty of preserving smoothness with p U-~~ - ’~’is~ polynottial approxiOat~ofl5 is

illustrated in Figure 1. Near the Point A , the polynomial piece q q(x,y) for

Figure 1. A subdivision of the unit square by quadrisection .

< 1/2 may remain
S 
fixed while squares above A are continually refined . Unless t

is exactly equal to q near A, the enforcement of continuity with q at A limits

the accuracy of the approximations obtained above A.
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l i t  e a t ’  U - or  ; t i c l e I - ; i l ~ - i t  ~-ro~~ei t i e -S  of an algorithm re al i ’i t ( et c loca ln ess ,

a; - - i j t , e - - y ,  smoothnet;s and t u - i ~ - n ise rva t ion  (of t he  ce l l s )  w h i c h  we- desire. The only

we know which have all t I s ’- J roper t ies ar e  l i e - H  i r ~~t I s o - t i o c  cc ’h ’rn’s c uch as

Coo n ’ s- l a tches (se-e barnh i l  1 11) for a s u r v e y  of such schem es in ~ 2) One may

inte rfrec - “ b l e n d i ng t u t o c t  l O t ” to  mean i n t -rp o la t  ion  to  the  i n te r i o r  of a cell  of da ta

f rom a l l  of the c e l l ’ s b o u n dar y ,  i . e . ,  the d a t a  f u net i o n al s  h i ~ ve v a l u e - c ;  i n  Thus ,

only in does one obtain cnrdina iy j cewise ~ Hynoititai api-roximation , using local

Hermi te in terpola t i c i t .

The’ a n a l y s i s  of ~c e c t i T c  1 and 2 app lies directly to adapt ive  b lending  f u n c t ion

approxima tions and we coti j i-- t ci t e  that these are the only r e al  i~ations of our adaptive

al g o r i t h i i i  t h a t  ~ r i d icc-  smooth approx imat ions  in for  N > 1.

Our algorithm can U- modified t - ~ i n: lude  a c o n s t r a i n t  on the “generation gap”

betweu-n nei ghboring cells (i c-call the termi nology of “paren t ” of a cell introduced in a4).

We say t h i t  a su l - d iv i s i oi i  is r- iiade- -l if the difference in generations between neighboring

ed it ; i c c  -it  moot r. A 0—graded subdivit ;ion is u n i f o r m . One can easily construct

situations win-re tI,is t - o n s - t t i i t  m ak€- s  the  rubdivi sian of one ccli t he  cause for sub—

divi sioi, of a i r t i c: t a l l  the n ‘ tic.; i t c ~ r i - i  - e l  I s .  In  q ri -i - al, a graded algori thrc w i l l  produce

a larger K than - i  algorithm d e n , We c o n j e c t t i r e , however , t hat  t h i s  c o n s t r a i n t  does

riot t e : ;t roy  t he  ~ I itnal late of c- oitv - i  i - I s  ~ o l t i  i C i  i n  Sec t ion  4. In  fact , it seems

plau t ;  I t i e  t h i a t  ( f o r  i imos t a l l  f )  there is an r depend in -i on f , 0 , E and the

local ah p r o x i n i t i o n  c ; -t i e- rts- , bu t  ir idepcnc lcn t  of r • so that all suid ;~’isioits produced

by the i cj  r i  I ho a i c  r— q r a d c d .

We close by noting t h a t  adaptive t-.enrtor product algorithms can be devised which

preserve smoothness for p ie c ew i se poly nomials , but they ca n no t achieve th e opt imal

convergence rate.
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